Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies Academic Article

journal

  • Molecular Ecology

abstract

  • ResumenLa comprensión de la base genética de la variación fenotípica y de los mecanismos que intervienen en la evolución de la novedad adaptativa, especialmente en las radiaciones adaptativas, es un objetivo importante de la biología evolutiva. Aquí, utilizamos datos de secuencia de todo el genoma para investigar el origen de la barra de ala trasera amarilla en la radiación Heliconius cydno. Encontramos variación modular asociada con el fenotipo de ala posterior en dos regiones estrechas no codificantes aguas arriba y aguas abajo del gen de la corteza, el cual fue identificado recientemente como un controlador de patrones de pigmentación en múltiples especies de Heliconius. La variación genética en cada uno de estos módulos sugiere un control independiente del patrón dorsal y ventral del ala posterior, con el módulo aguas arriba asociado al fenotipo ventral y el módulo aguas abajo al dorsal. Además, detectamos introgresión entre H. cydno y sus especies estrechamente relacionadas Heliconius melpomene en estos módulos, lo que probablemente permitirá a ambas especies participar en nuevos anillos de mimetismo. En resumen, nuestros hallazgos apoyan el papel de la modularidad regulatoria junto con la introgresión adaptativa como un mecanismo elegante mediante el cual las combinaciones fenotípicas novedosas pueden evolucionar y alimentar una radiación adaptativa.
  • Understanding the genetic basis of phenotypic variation and the mechanisms involved in the evolution of adaptive novelty, especially in adaptive radiations, is a major goal in evolutionary biology. Here, we used whole genome sequence data to investigate the origin of the yellow hindwing bar in the Heliconius cydno radiation. We found modular variation associated with hindwing phenotype in two narrow non-coding regions upstream and downstream of the cortex gene, which was recently identified as a pigmentation pattern controller in multiple species of Heliconius. Genetic variation at each of these modules suggests an independent control of the dorsal and ventral hindwing patterning, with the upstream module associated with the ventral phenotype and the downstream module with the dorsal one. Furthermore, we detected introgression between H. cydno and its closely related species H. melpomene in these modules, likely allowing both species to participate in novel mimicry rings. In sum, our findings support the role of regulatory modularity coupled with adaptive introgression as an elegant mechanism by which novel phenotypic combinations can evolve and fuel an adaptive radiation. This article is protected by copyright. All rights reserved.

publication date

  • 2017/8/4

keywords

  • Biological Sciences
  • Butterflies
  • Genes
  • Genome
  • Heliconius
  • Melpomene
  • Phenotype
  • Pigmentation
  • Radiation
  • adaptive radiation
  • butterflies
  • butterfly
  • controllers
  • cortex
  • evolutionary biology
  • gene
  • genes
  • genetic variation
  • genome
  • introgression
  • mimicry
  • mimicry (behavior)
  • phenotype
  • phenotypic variation
  • pigmentation
  • radiation

International Standard Serial Number (ISSN)

  • 0962-1083